Interaction Techniques Using The Wii Remote (and other HCI research)

Johnny Chung Lee

Microsoft - Applied Sciences

Carnegie Mellon University

Dec2008

What is HCI?

Psychology

Understanding People

Understanding Technology

CS/EE

Understanding Needs

Interaction Techniques Using The Wii Remote (and other HCI research)

Johnny Chung Lee

Microsoft - Applied Sciences

Carnegie Mellon University

Dec 2008

Nintendo Wii

Nintendo's 5th Video game console Release Date: 11/19/06 35 million units worldwide (Sept '08)

>35 million Wii remotes 1-4 remotes per console

7-10 million Tablet PCs

Nintendo Wii Remote

Bluetooth HID compatible joystick MSRP \$40 USD

Inputs:

IR camera tracker Accelerometer 12 digital buttons

Outputs:

Tactile – vibration motor Auditory – small speaker Visual –blue status LEDs

Other:

Expansion port
On-board memory
Batteries

IR Camera Tracker

Manufactured by PixArt Imaging
Multi-Object Tracking™ engine (MOT sensor™)

Official specifications are confidential, but....

Hardware IR blob tracking up to 4 points

Resolution: 1024x768 (true: 128x96) Refresh Rate: 100Hz – 200Hz via I2C

Dot size: 4-bits Intensity: 8-bits

Bounding Box: 7-bits x-y

Horizontal Field of view: 45 degrees

Nintendo Wii "Sensor Bar"

Contains two IR emitter groups

Two dots = 4 values: (x1, y1), (x2, y2)

4 values $\rightarrow x$, y, rotation, and distance

correspond primarily to: tilt, yaw, roll, and distance

Accelerometer

Analog Devices (ADXL330)

3-axis linear accelerometer

Range: +/-3g sensitivity

Resolution: 8 bits/axis

Sample Rate: 100Hz

Buttons

Total of 12 digital buttons
11 are accessible to an application

Power button - initiates and terminates Bluetooth connection

Ambidextrous design 4 buttons arranged in a D-pad

Index finger trigger button (B) Primary thumb button (A)

Output

Tactile – Vibration motor, up to 100Hz update rate

Auditory – Small speaker, 4Khz*, 4-bit audio streamed from host, approx telephone quality.

Visual – Four blue LEDs, player ID, individually addressable, up to 100Hz update rate

Other Features

Bluetooth – Broadcom 2042 for Human Interface Devices (HIDs). Not 100% compliant, but compatible with PCs.

Expansion Port – Proprietary 6-pin connector. Provides power and Fast I2C communication. Acts as a Bluetooth to I2C bridge.

Onboard Memory – device configuration and ~ 5KB of general memory. Physical association of data and identity with a remote.

Batteries – two AA batteries provide 20-30 of operation. 8-bit battery level sensor.

Developing Custom Applications

Bluetooth HID joystick compatible with HID driver libraries.

Libraries available for nearly every major development platforms on Windows, MacOS, and Linux.

Visit http://wiili.org or http://wiili.org or http://wiili.org

Brain Peeks C# managed WiimoteLib Read values from data structure to access data Most libraries include a sample program

Eventual support:

Better Event-handling
Related geometric transformations
Gesture Recognition

Interaction Techniques

Game Interaction – Pointing

Selection/Navigation

Drawing

Aiming a weapon/tool

Push/Pull or Rotate

Note: All pointing is relative

Game Interaction – Motion

Directional Shake Trigger

Tilt Control

Analog Shaking

Swing Simulation

Games provide context on how to hold remote.

Game Interaction – Buttons and Joysticks

Nunchuk attachment for non-dominant hand

Joystick
2 buttons
3-axis accelerometer

Input Device	Digital	Analog
Wii Remote + Nunchuk	13	12
Xbox 360 Controller	14	6
Scroll Mouse	3	3

By the Developer Community

Robot Control

Cursor Control

Synth Music Performance

Flash-Based Mouse Games

Online Videos Tutorials >10 million views

Moving

+

+

Stationary

Orientation

tilt, *yaw*, *roll*, and *z*

Moving

Stationary

Translation

x, y, z, and roll

project

Finger and Object Tracking

Finger and Object Tracking

Wii remote can track any IR emitter Active emitters can be cumbersome

Finger and Object Tracking

Vicon Motion Capture System

Video – Finger Tracking

Object Tracking - Limitations

Only 4 points – limitation of Wii remote, but good for the price. Temporal multiplexing, multiple remotes

No inactive cursor feedback \rightarrow 4 point index finger and thumb tracking with pinch detection.

Arm Fatigue → Table top or transparent surfaces. Reflective tags may need repositioning.

Unintentional Reflections → Active IR emitters when possible. Can be installed in handheld or wearable devices (e.g. sports equipment, animal tracking).

project 2 Interactive Whiteboards

Multi-Point Interactive Whiteboards

Point Wii remote at display
Map camera coordinates to display coordinates
4-point touch calibration (homography)
Simulate mouse cursor

Video/Demo - Whiteboard

Interactive Whiteboards - Limitations

Maximum 1024x768 resolution.

Dependent on good camera positioning.

Sensitive to occlusion.

Solutions

Adjust camera position (over-head)
Use multiple Wii remotes
Use rear projected displays.

80% of the way there1% of the cost

Two Effects:

1. Increased participation:
Advances the state of research

2. Increased practicality:
Advances the state of technology

>2 million views

Video Responses (37 Responses)

Re: Low-Cost Multi-touch

From: wiibart Views: 340 Response: 37 05:34 Remove

Wiimote + Infra-red pen = a brea...

From: techsavvy4sc... Views: 567 Response: 36 02:29 ****

Remove

Re: Low-Cost Multi-touch

From: yurukov Views: 1,500 Response: 35 06:46

My Wiimote "Smartboard"

From: lolerd Views: 1,274 Response: 34 03:00

Wiimote whiteboard on projector

From: xaanaax Views: 250 Response: 33 02:00

Remove

My Wiimote Whiteboard beta

From: acosta11 Views: 1,881 Response: 32

01:42 **** Remove

Re: Low-Cost Multi-touch

From: TheCEO54 Views: 12,243 Response: 31 08:47 Remove

Wii Remote Whiteboard 4th

From: parkerdet Views: 6,900 Response: 30 01:58 Remove

Remove

wii remote laser tracking

From: sha433 Views: 13,759 Response: 29 02:05 Remove

Remove

Cheap Whiteboard with a wiimote Screen

From: DJTx1300 Views: 4,948 Response: 28 03:16

Playing Football on

From: vgaliano Views: 1,471 Response: 27 01:40 Remove

WiimoteWhiteboa rd Java Implemen...

From: ujs83 Views: 4,385 Response: 26 00:44 **** Remove

HOWTO build an IR pen

From: choulo Views: 35,778 Response: 25 03:58 Remove

Re: Low-Cost Multi-touch

From: albes83 Views: 2,202 Response: 24 00:37

Edusim (Powered by Croquet) on u...

From: GreenbushTV Views: 4,862 Response: 23 01:31

Remove

Remove

Re: Low-Cost Multi-touch

From: Haprog Views: 4,559 Response: 22 00:56

Wiimote Whiteboard vs. Commercia...

From: drew0mckinney Views: 25,735 Response: 21 05:49 ****

Re: Low-Cost Multi-touch

From: TrabBurks Views: 4,331 Response: 20 05:33

**** Remove

Re: Low-Cost Multi-touch

From: Bmud Views: 1,407 Response: 19

Remove

Re: Low-Cost Multi-touch

From: hagenees80 Views: 3,212 Response: 18

Wii Whiteboard with Projector

From: ignoble Views: 2,084 Response: 17

Remove

Wii Whiteboard with LCD

From: ignoble Views: 4,005 Response: 16

Remove

Re: Low-Cost Multi-touch

From: Speckknoedel Views: 1,825 Response: 15

Touchscreen with Wiimote (Johnny...

From: liransr Views: 10,802 Response: 14

HOWTO build an IR pen

Added: 7 months ago From: <u>choulo</u> Views: 35,712

03:58

More in Science & Technology

How to make an IR pen for a Wiimote

Added: 7 months ago From: <u>ccardew</u> Views: 13,389

More in Education

03:42

and the same of

IR PEN for wiimote

Added: 4 months ago From: <u>av1066</u> Views: 1,416 **02:24**

More in Howto & Style

Very Easy to Make! IR-Pen for Wiimote

Added: 2 months ago From: benpaddlejones

Views: 983

04:31

More in Howto & Style

Students Using Wilmote Whiteboard

Students Using Wilmote Whiteboard

watch in high quality

Mac OS X

Linux

YoungHyun Chung, NYU

project 3

Head Tracking for Desktop VR

Ivan Sutherland, Harvard University, c. 1967.

Video/Demo – Head tracking

Head Tracking for Desktop VR Displays using the WiiRemote

Rate: ★★★★ 22,918 ratings **Views:** 6,415,968

6 million ~= sold out shows 5 times a week for 10 years

Motion Parallax

www.flickr.com/photos/kap cris/472159801/

- Very important depth cue
- Velocity of objects when moving
- Occlusion behavior

[Ware, Arthur, and Booth CHI'93] Motion parallax is more important than stereo

Calculating Head Position

Horizontal Position

Vertical Position

Limitations

Perspective is correct for only 1 person – split screen or shutter glasses

Limited Tracking Volume – increase field of view with wide angle lens or use multiple remotes.

Can't touch objects – Sorry. Keep objects behind the display surface and blame the display.

Conflicting Stereo Depth Cues – weakens the effect, use stereoscopic display technology (polarized/shutter glasses, etc)

Anaglyph (red/blue): bad color fidelity, but would work, cheap

Shutter glasses: active device, frame sync, higher frame rates (120Hz okay)

Polarized glasses: does not work with most existing consumer televisions, cheap

Auto-stereoscopic: not consumer technology yet

If you can't provide stereo, removing the conflicting stereo depth cues **will improve** the head tracking illusion.

Nigel Tzeng – NASA Whirlwind

project 4

Spatial Augmented Reality

Spatial Augmented Reality

Shader Lamps, Raskar et al UNC/MERL

Everywhere Displays, Pinhanez et. al, IBM

Projected light can be used to augment the appearance of physical objects.

Aligning to static objects can be done manually. Moving objects requires low-latency, high-resolution tracking.

1024x768 @ 100Hz tracking of the Wii remote is quite good.

Video – Foldable Displays

Limitations

Wii remote only tracks 4 points.

- Limits the number of objects
- Limits the geometric complexity

4 points can track arbitrary quadrilateral

Assumptions reduces necessary points

- square surface
- constrained to a plane

Other projects: 3D tracking

7.5 6.5 0.5 0.5 0.5 1.8 You Tube

Simon Hay, University of Cambridge

Other projects ...

Tracking with ID – currently no point ID. Use high-speed IR receiver in conjunction with camera should allow location with ID.

IR Glyphs – use varying spatial and temporal behavior of 4 IR emitters to create unique IDs. Allows Wii remote to know what object it is pointing at.

Laser Tag – instrument each Wii remote with IR emitters so they can see each other. ID can be temporally verified.

Wii remotes

>35 million Wiimotes Sophisticated I/O capabilities Only \$40 USD

Vast number of applications limited only by creativity

Document & Share

> 10 million views

> 700,000 downloads

1000s of students and teachers

8 patent licensees

6 major game studios

Exploring educational initiatives

Other HCI Research

Projector-Based Location Discovery and Tracking

Low-Cost EEG for Task Classification

Haptic Pen

\$14 steadycam

Projector-Based Location Discovery

Step 1:

Embed light sensors

[UIST 2004]

Step 2:

Project Gray-coded patterns

Step 3:

Decode location for application

Low-Cost EEG for Task Classification in HCI Research

National Geographic, March 2005

NY Times Magazine, October 16, 2005

EEG Devices

Manufacturer: EGI Systems

Channels: 128-512

Cost: **\$100K-\$250K USD**

Manufacturer: BioSemi

Channels: 64-128 Cost: ~\$30K USD

The Brainmaster

Lowest cost FDA approved device

Designed for home and small clinical use.

Only \$1500 USD

Specs:

- 2-channels
- 8-bit at 4µV resolution
- 256 samples/sec

Needs to be validated for BCI research work.

If it works, it **lowers the entry bar** for BCI research.

Mean Classification Accuracy vs. Averaging Scenarios (Mental Tasks)

human as a sensor

Muscle-Computer Interfaces

Haptic Pen(MERL - 2004)

> \$2000 USD

[Poupyrev and Maruyama, UIST 2003]

Goals: Support large touch-sensitive displays. Support multiple simultaneous users.

Solution: Haptic Pen

- Individualized feedback
- Pressure Sensitivity
- Hover tracking data
- Feedback not bound to display
- Aftermarket device
- Low-cost (~\$10)

Pressure sensitivity allows variable feedback/activation

Multi-level buttons also possible (camera shutter)

On-axis feedback **more** accurate than vibration

Light Button

Stiff Button

\$14 Steadycam₍₂₀₀₀₎

Over **1.4M** views (not including syndication) Over **\$250K** in revenue

Staple of independent/student filmmaking community. Used in many high-school and college programs.

If you create technology that is **accessible**, you can advance the state of humanity (if only a little)

2-3 orders of magnitude

Augmented reality
Multi-touch surfaces
Immersive Displays
Brain-Computer Interfaces
Haptics
Filmmaking

what next?

Star Trek – Next Generation, 24th century

Crysis, EA, 2007

Jeff Han – FTIR/Perceptive Pixel

Paul Dietz – Diamond Touch/iPhone parent

Andy Wilson – Surface/Xwand

Bill Buxton - Multi-touch/Maya/Alias

UIST – User Interface Software & Technology Also consider: SIGGRAPH, SIGCHI, UBICOMP

Projector-Based Location Discovery and Tracking

Low-Cost EEG for Task Classification

Interaction Techniques using the Wii Remote

Haptic Pen

\$14 steadycam

Collaborators: Desney Tan, Paul Dietz, Scott Hudson, Ramesh Raskar, Dan Maynes-Aminzade, Jay Summit, Chris Kyriakakis, Darren Leigh

Johnny Chung Lee
Johnny.lee@microsoft.com
http://johnnylee.net

